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Abstract
Two Bloembergen–Purcell–Pound (BPP) models for analysing nuclear spin
relaxation data for translational diffusion in disordered systems are compared
with Monte Carlo simulations. One model (the a-BPP model, ‘a’ standing
for average) is commonly used for disordered systems and the other (the
Cameron–Sholl BPP model) is more rigorously based and can distinguish
between site- and barrier-energy disorder. Simulated relaxation data produced
using Gaussian distributions of energy disorder are analysed using the models,
and the parameters obtained from the fits are compared with the values used
for the simulations. It is found that both models can give reasonable fits to
the data. Both models also give reasonable agreement with the simulation
parameters provided that the standard deviation of the energy distribution for
the a-BPP model is interpreted as the average of the site- and barrier-energy
standard deviations. Quantitative estimates are given of the accuracy of the
parameters from the fits.

1. Introduction

The analysis of nuclear spin relaxation rates due to magnetic dipolar interactions between spins
undergoing relative diffusion is often performed, for simple ordered systems, by using the
Bloembergen–Purcell–Pound (BPP) model (Bloembergen et al 1948). The BPP model simply
assumes an exponential correlation function for the magnetic dipolar fluctuations at a nuclear
site. More accurate models have been developed for ordered systems which take into account
the random walks of the diffusing species (see, for example, Sholl (1988)), but such detailed
models are far more complex for disordered systems. A simple extension of the BPP model
to disordered systems is obtained by averaging the exponential correlation function over an
assumed distribution of activation energies arising from the structural disorder. This extension
of the BPP model, to be referred to as the a-BPP model, is commonly used in analysing nuclear
spin relaxation rates in disordered systems (see, for example, Barnes (1997)).
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The a-BPP extension of the BPP model has little physical justification. An alternative
extension of the BPP model to disordered systems, to be referred to as the Cameron–Sholl
BPP (CS-BPP) model, has been proposed (Cameron and Sholl 1999a, Sholl 2000). This
model is a more rigorous application of the BPP model to disordered systems which takes into
account the Fermi–Dirac statistics for occupation probabilities of sites, and describes the jump
probabilities of diffusing species away from a particular site correctly. The model can also
incorporate both site-energy and barrier-energy disorder, unlike the a-BPP model for which
the description of the energy disorder is not specified. The CS-BPP model has recently been
applied to the analysis of relaxation data in a quasicrystalline material (McDowell et al 2001).

While the CS-BPP model is more rigorously based than the a-BPP model, it still involves
the fundamental approximation of an exponential correlation function and does not take into
account the random walk of the diffusing species on the disordered structure. The accuracy
of assuming an exponential correlation function can be assessed in ordered structures by
comparing the results with those from more rigorous models, but the accuracy of the a-BPP
and CS-BPP models is not known for disordered structures. The aim of the present work is
to assess the accuracy of these models by comparing their results with those obtained from
Monte Carlo (MC) simulations.

The analytic forms of the BPP models are summarized in section 2. MC simulations of
diffusion in disordered systems are more complicated than for ordered systems and the details
of the simulation procedure used are described in section 3. The results of the simulations for
some particular cases are compared with the results for the BPP models in section 4.

2. BPP models

The correlation function G(t) for magnetic dipolar interactions is (see, for example, Girard
and Sholl (1996))

G(t) =
∑
α,β

P2(cos θαβ)

r3
αr3

β

Peq(rα)P(rα, rβ , t) (1)

where Peq(rα) is the equilibrium probability of a pair of spins being separated by rα ,
P(rα, rβ, t) is the probability that a pair of spins are separated by rβ at time t if they were
separated by rα at time zero, and θαβ is the angle between rα and rβ . The basic assumption
in BPP theories is to approximate P(rα, rβ, t) by the probability of no jump of either spin in
a time t . It is this assumption that gives an exponential correlation function in simple ordered
systems. The physical meaning of the assumption is that the magnetic dipolar correlation is
completely destroyed when a jump of either spin occurs.

As described in Cameron and Sholl (1999a) and Sholl (2000), the CS-BPP model considers
a set of sites in a disordered structure for which the site-energy probability distribution is Ns (E)

and for which there is an energy barrier between adjacent sites with an independent distribution
Nb(E1). A fraction c of the available sites are filled with atoms which diffuse by jumps from
a site with energy E to a neighbouring site across a barrier with energy E1 with a jump rate �

given by

�(E, E1) = �0e−(E1−E)β (2)

where β = 1/(kT ) and the prefactor �0 is assumed to be the same at all sites. The CS-BPP
correlation function for magnetic dipolar interactions between spins diffusing on these sites is

G(t) = S

c

{∫
p(E)Ns(E) dE

[∫
Nb(E1)e−(1−c)�(E,E1)t dE1

]Z }2

(3)
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where Z is the average number of nearest-neighbour jumps from a site, S is the lattice
summation S = ∑

α r−6
α , and p(E) is the Fermi–Dirac function

p(E) = 1

e(E−µ)β + 1
. (4)

The chemical potential µ is related to c by

c =
∫ ∞

−∞
p(E)Ns(E) dE . (5)

The corresponding correlation function for the a-BPP model averaged over a distribution N(E)

of activation energies is (Barnes 1997)

G B P P(t) = Sc
∫

N(E)e−2(1−c)Z�(E)t dE (6)

where �(E) = �0 exp(−Eβ). The relation between the energy distribution N(E) and site and
barrier energies is not specified in this model.

The corresponding spectral density functions J (ω) are the Fourier transforms of the
correlation functions, and the nuclear spin relaxation rates are linear combinations of the
spectral density functions (see, for example, Sholl (2000)). A numerical technique for
evaluating the CS-BPP spectral density functions has been described by Sholl (2000).

3. Monte Carlo simulations

The MC simulations were performed for the diamond structure and for the simple cubic lattice
to simulate diffusion in disordered systems with average coordination numbers of Z = 4 and 6,
respectively. Diffusion is assumed to occur between the sites of these ordered structures with
the disorder imposed on the jump rates of the diffusing species. Structural disorder could also be
included in the simulations but was not considered because it involves additional parameters;
it is sufficient to assess the validity of the a-BPP and CS-BPP models without including
structural disorder, and the disorder in the jump rates is likely to be much more important than
the structural disorder in explaining the form of relaxation rates in disordered systems.

In a simulation each site was allocated an energy according to the site-energy probability
distribution and each direction to a nearest-neighboursite was independently allocated a barrier
energy according to the barrier-energy distribution. Sites were then filled randomly with
spins according to the site-energy distribution and the Fermi–Dirac distribution for a specific
temperature T and average concentration cof atoms. The occupational probabilities of the sites
then correspond to thermal equilibrium. It was verified numerically that the system remained
in thermal equilibrium as diffusion proceeded. Periodic boundary conditions were used to
ensure that no spins were lost from the system.

The diffusion for the site- and barrier-energy disorder was simulated in two ways: a
discrete time method and a continuous time method. In the discrete time method, a spin and
its jump direction to a nearest-neighbour site are chosen randomly at each MC cycle. If the
target site for the jump is occupied, no jump occurs and the next cycle commences. If the
target site is unoccupied, the jump is allowed to occur with probability �/�max where � is
the jump rate for the particular jump and �max is the maximum jump rate for any jump in the
particular simulation. The number N of MC cycles is related to the time t by N = Ns�max t
where Ns is the number of spins in the simulation.

In the continuous time method, all possible (unblocked) jump frequencies �i are first
calculated for the current stage of the particular simulation at the beginning of each MC cycle.
The sum �tot of all these frequencies is then stored. The time �t to the next spin jump
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somewhere in the system is then calculated from a random number X between 0 and 1 using
X = 1−e−�tot t , since e−�tot �t is the probability of no jump in a time t . The jump i that actually
occurs is chosen with probability �i/�tot .

In both methods it is more efficient to follow the diffusion of vacancies rather than spins
for c > 0.5. It was verified that the discrete time and continuous time methods gave consistent
results. Another check on the simulation procedures was to compute the average jump rate
and compare it with the known analytic form (Cameron and Sholl 1999b). With regard to the
comparative efficiency of the two methods, the continuous time method has the disadvantage
of requiring the calculation of �tot at each MC cycle, but has the advantage that a successful
jump always occurs. The discrete time method has less computation at each cycle but can
result in many cases with blocked jump attempts. It was found that the discrete time method
was more efficient at low concentrations of spins or vacancies and that the continuous time
method was more efficient at higher concentrations.

The correlation function (1) was calculated at regular time intervals in a simulation. The
form of G(t) is difficult to obtain accurately at long times since this requires very long
simulations. This difficulty was overcome by noting that the asymptotic form is expected
to be proportional to t−3/2 since the correlation is a result of three-dimensional diffusion. This
asymptotic limit was verified numerically and the proportionality constant obtained in each
simulation. To obtain the corresponding spectral density function J (ω), the Fourier transform
of G(t) can then be evaluated accurately and efficiently by integrating the numerical form
of G(t) up to the time at which the t−3/2 behaviour is reached and integrating the analytic
asymptotic form for larger t .

MC simulations of nuclear spin relaxation rates for diffusion in disordered systems have
previously been carried out by Adnani et al (1994) and Hua et al (1995, 1997). The work of
these authors did not use the Fermi–Dirac function for the equilibrium distribution of spins and
discussed the results in terms of the average jump rate, which was obtained numerically from
the simulations. Analytic expressions for the average jump rate are now available (Cameron
and Sholl 1999b). The correlation functions obtained were fitted to a sum of exponentials
rather than by the more rigorous procedure of obtaining the correct asymptotic limit as used
in the present work.

4. Results

The approach used to assess the accuracy of the BPP models was to first use MC simulations
with a choice of diffusion parameters to calculate the correlation functions G(t), spectral
density functions J (ω), and relaxation rates R1 in the laboratory frame and R1ρ in the rotating
frame as functions of temperature. The R1-relaxation data were then fitted using the a-BPP
and CS-BPP models by varying the diffusion parameters and using a numerical least-squares
fitting procedure. The accuracy of the BPP models can then be assessed by the quality of
the fits obtained to both the R1- and R1ρ-data, and, in particular, by how well the original
parameters used in the simulation are reproduced by the fits.

All simulations were performed assuming a Gaussian N(E) = (2πσ 2)−1/2 exp[−(E −
E)2/(2σ 2)] for the energy probability distributions. Subscripts s and b will be used to denote
parameters referring to site energies and barrier energies, respectively. The difference between
the mean barrier energy and mean site energy is Ea = Eb − Es . Ea will also denote the mean
energy for the energy distribution in the a-BPP model. A value of Ea = 0.5 eV was used in
all of the simulations.

Calculations were performed for concentrations c = 0.1, 0.5, and 0.9 of diffusing nuclei
on the simple cubic lattice and on the diamond structure. The MC simulations used 223 sites
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Figure 1. Comparison of the normalized correlation function from a MC simulation with the a-
BPP and CS-BPP models for the same parameters and conditions: tetrahedral structure, c = 0.1,
σs = 1.5kT , σb = 3kT . The a-BPP curves are for σ = 1.5kT (short-dash curve) and σ = 3kT
(long-dash curve). The parameter t ′ = (1 − c)�0t exp(−Ea/kT ).

for the simple cubic lattice with c = 0.1 and 1000 sites for other c. The number of sites used
for the tetrahedral structure were 163 for c = 0.1 and 1000 for other c. It was verified that there
was no significant change in the results for a larger number of sites. Results for the correlation
function G(t) were averages of at least 30 different simulations for the same set of parameters.

An example of a correlation function as a function of dimensionless time, given by
t ′ = (1 − c)�0t exp(−Ea/kT ), is shown in figure 1. The a-BPP and CS-BPP results are for
the same parameters as the MC simulations. The a-BPP model does not distinguish between
site- and barrier-energy distributions, so results are shown for both values of the standard
deviations. The BPP correlation functions depend only on the combination σ/kT rather than
σ and T separately. All of the curves in figure 1 are qualitatively similar and show decay
slower than exponential. There are, however, quantitative differences between the curves
which indicate that fitting the relaxation data by varying the diffusion parameters will give
different parameters to those used for the simulations. (Figure 1 showing the CS-BPP curve
is analogous to figure 2 in Sholl (2000). The latter figure is incorrect.)

Examples of simulated relaxation rates and fits to the R1-data are shown in figures 2
and 3. The parameters varied in the fits were: Ea , �0, σs , and σb for the CS-BPP model;
and Ea, �0, and σ for the a-BPP model. The R1ρ -curves shown for the BPP models are for
these parameters obtained from the R1-fits. The curves are not fitted to the MC R1ρ -data.
The quality of the fits to the data is reasonable for both models, but is better for the CS-
BPP model. The fit in the low-temperature region is the least satisfactory, which suggests
that the BPP models are less reliable there. The low-temperature region is also the region
for which the MC simulations and the calculations for the models are most time-consuming.
The effort necessary to perform the calculations in this region would not therefore seem to
be worthwhile, and fitting to experimental data would be more efficiently done by excluding
such low-temperature data. The simulations and calculations for the models are also more
time-consuming for larger amounts of disorder in the energy distributions. For example, the
data in figure 3 required considerably more computing time than those in figure 2 because of
the larger values of the standard deviations.
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Figure 2. The relaxation rates R1 and R1ρ (in units of the second moment M2) from the MC
simulations and the fits using the a-BPP (dashed curves) and CS-BPP (solid curves) models.
The MC results are shown by symbols: +(c = 0.9) and ×(c = 0.1). The simulations are for
Ea = 0.5 eV, σs = 0.03 eV, σb = 0.06 eV and �0 = 3 × 1013/(1 − c) s−1. The parameters for
the fits are given in table 1.

Figure 3. As for figure 2, but with σs = σb = 0.0875 eV.

The values of the fitted parameters are compared in table 1 with the starting values of the
parameters for the cases in figures 2 and 3, and for a range of other starting parameters. All of
the data in table 1 are for the tetrahedral structure and values of c = 0.1 and 0.9. Calculations
were also performed for c = 0.5 and for diffusion on a simple cubic lattice. The agreements
with the starting parameters in these cases were similar to those presented in table 1.

The values of Ea , σs , and σb from the fits using the CS-BPP model agree with the starting
values of these parameters typically to within 10%. The values of σ from the fits using the
a-BPP model are close to the corresponding means of the starting values of σs and σb. The
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Table 1. Comparison between the starting parameters for the MC simulations and the parameters
deduced by fitting the BPP models to the R1-relaxation rates. Units are eV for energies and standard
deviations, and 1013 s−1 for �0.

c MC CS-BPP a-BPP

0.1 σs = 0.03, σb = 0.06 0.032, 0.059 0.047
Ea = 0.5, �0 = 3.3 0.51, 1.1 0.51, 1.5

0.9 σs = 0.03, σb = 0.06 0.033, 0.062 0.043
Ea = 0.5, �0 = 30 0.54, 6.8 0.52, 12

0.1 σs = 0.06, σb = 0.03 0.052, 0.034 0.048
Ea = 0.5, �0 = 3.3 0.48, 0.71 0.53, 1.3

0.9 σs = 0.06, σb = 0.03 0.066, 0.027 0.048
Ea = 0.5, �0 = 30 0.54, 11 0.53, 11

0.1 σs = 0.045, σb = 0.045 0.051, 0.048 0.048
Ea = 0.5, �0 = 3.3 0.49, 0.98 0.52, 1.4

0.9 σs = 0.045, σb = 0.045 0.058, 0.054 0.042
Ea = 0.5, �0 = 30 0.57, 14 0.56, 6.1

0.1 σs = 0.075, σb = 0.1 0.075, 0.092 0.085
Ea = 0.5, �0 = 3.3 0.54, 2.0 0.58, 3.1

0.9 σs = 0.075, σb = 0.1 0.056, 0.087 0.073
Ea = 0.5, �0 = 30 0.54, 5.4 0.56, 15

0.1 σs = 0.1, σb = 0.075 0.13, 0.070 0.090
Ea = 0.5, �0 = 3.3 0.48, 2.9 0.61, 3.0

0.9 σs = 0.1, σb = 0.075 0.090, 0.068 0.075
Ea = 0.5, �0 = 30 0.58, 7.1 0.52, 4.9

0.1 σs = 0.0875, σb = 0.0875 0.081, 0.083 0.075
Ea = 0.5, �0 = 3.3 0.57, 3.6 0.59, 3.7

0.9 σs = 0.0875, σb = 0.0875 0.070, 0.072 0.078
Ea = 0.5, �0 = 30 0.58, 5.9 0.55, 8.9

accuracy of the deduced values of Ea and the mean of the standard deviations is again typically
within 10%. The fitted values of the jump rate prefactor �0 are too small by a factor of up to
approximately five for both the BPP models.

5. Conclusions

The comparison between the MC simulations of the relaxation rates with the fits using the
a-BPP and CS-BPP models for the range of parameters studied show that both of the models can
produce reasonable fits to the relaxation data, except for the low-temperature regime. It would
therefore be preferable in using the models for fits of experimental relaxation data to exclude
data in the low-temperature region, especially in view of the considerable computational effort
needed to calculate the theoretical values there.

Within the constraint of assuming Gaussian distributions for the energy distributions,
the values of the parameters obtained from the fits suggest that the CS-BPP model can give
standard deviations and the difference between the mean energies for the site- and barrier-
energy distributions for relaxation data fits to typically within 10%. The a-BPP model cannot
provide information on site and energy distributions separately, but appears to give reasonable
values of the averages of the standard deviations of the distributions, and the energy difference
between the means again to typically within 10%. Both models give values of the prefactors
for the jump rates that are typically too small by a factor of up to five. These quantitative
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results show that the BPP models are likely to be quite reasonable in analysing relaxation data
on disordered systems to within these accuracies.

The a-BPP and CS-BPP models have been used by McDowell et al (2001) to analyse proton
relaxation data in a metallic icosahedral quasicrystal. A difficulty with fitting these data was
that the relaxation rates in the laboratory and rotating frames could not be fitted simultaneously
with a single set of parameters. The relative values of the maximum rates in the laboratory
and rotating frames could not be reproduced by the BPP models. The comparison of the MC
simulations with the results from the BPP models show that both of the models do reproduce
the relative values of these maximum rates well. The source of the anomaly in the relative
maxima in the above case is therefore not due to the approximations in the BPP models.
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